
The Science of Software and System Design∗

Stavros Tripakis
Aalto University and University of California, Berkeley

May 11, 2017

1 Introduction

This paper has been prepared for the workshop Foundations of Cyber-Physical Systems, taking place on June
2nd, 2017, at KTH, Sweden. The goal of this paper is to start a discussion around the question what is the
science of system design? In our opinion, such a science exists and is common to Cyber-Physical Systems
(CPS) as to many other complex systems, in the sense described below. We will therefore speak generally
of systems here, without focusing specifically on CPS.

Following [21, 22], we use the term system to denote dynamical systems in general, that is, objects
that have a notion of state, a notion of dynamics (i.e., evolution of state over time), and a notion of
composition, which allows to build larger systems from smaller and simpler components or subsystems.
System composition is fundamental but often neglected in traditional system theories. On the other hand,
compositionality has been extensively studied in the field of formal methods such as model checking [3, 6]
and formal software development methodologies [10, 11, 8, 25, 2]. We use the term design not in the artistic
sense, but in the engineering sense, to include the entire process from initial concept to final product.

2 System design approaches

There are basically two approaches to system design: (1) design by trial and error, and (2) model-based
design. In trial-and-error, design is typically done by building prototypes, testing them (often in the field),
finding errors, fixing them, and repeating the process. This approach may be feasible for relatively simple
systems, but does not scale well and becomes infeasible for complex systems. By complex, we mean systems
that are difficult to understand, to reason about, and to argue for their correct behavior. There are several
factors contributing to the complexity of modern systems, from sheer size (e.g., millions of lines of code) to
subtle cyber-physical interactions. A major complexity factor is the fact that modern systems fundamentally
rely on software. Software is inherently complex: even small programs can exhibit behavior that defies the
understanding of today’s mathematics [22]. The larger the software, the smaller the chance to “get it right”
simply by trial-and-error. This not only makes design by trial-and-error expensive and error prone. It also
makes it unsafe, as most CPSs are safety-critical. Despite this, trial-and-error is prevalent today (c.f., the
development of self-driving cars, and related accidents).

An alternative approach is model-based design (MBD) which proposes to use models rather than proto-
types, at least during the design phase, but more and more also during other phases and indeed during the
entire lifetime of the product [13]. Models are often cheaper to produce and test. Bugs found are typically
found earlier when it is easier and cheaper to fix. Perhaps most importantly, a system model can often
be subjected to formal verification, which provides stronger guarantees than simulation or testing. Such
guarantees may include proofs of correctness with respect to given formal specifications.

∗This work was partially supported by the National Science Foundation (awards #1329759 and #1139138), and by the
Academy of Finland. Some of the ideas presented here have appeared previously in [21] and [22].

1



3 Is there a science of software and system design?

The position of this paper is that software and system development need not be just a craft or an art [12]. It
can be a science. Understandably, the science of system design sounds so broad that one may be suspicious.
After all, there are entire disciplines devoted specifically to the study of different types of systems, from
mechanical, to electrical, to software engineering, and many more. Can the science of system design seriously
claim to encompass all these disciplines? Our goal here is not to make grandiose claims about a “theory of
everything”. Nevertheless, we still believe that an overarching discipline of system design is both feasible
and necessary. Such a discipline studies abstractions and common principles that are fundamental in all
kinds of systems (see below). Such a discipline will also create rigorous interfaces with specific disciplines
such as the ones mentioned above.

We believe that formal methods provide many of the foundations of the science of system design. Notions
such as specification vs. implementation, correctness, termination, transition system, reachability, hierarchy,
compositionality, interfaces, abstraction, refinement, and many more, are fundamental to most systems. Yet
most engineers ignore these notions or, even if they have an intuitive understanding of them, have not been
educated formally in them. Education is a crucial part of our vision. Courses in formal methods, verification,
even basic logic, are typically given only at the advanced postgraduate level. What is worse, students often
lack knowledge of basic mathematics (sets, functions, relations). Such courses need to be moved to the
undergraduate curriculum and offered beyond the standard EECS majors.

But the task of developing (or consolidating from its fragments) the science of system design is Herculean,
and will rely, in addition to education, on significant investments in research. In addition to classic and
difficult topics such as computational logic, optimization, formal verification, program synthesis (e.g., see [1]),
formal software engineering, programming languages, hybrid systems [18], and many more, we need to invest
more effort in building bridges and interfaces, to close the gaps between the various disciplines. Efforts
towards that direction include but are certainly not limited to: formal aspects of multi-view modeling [17,
15, 14]; compositional simulation [4, 20]; theories of contracts and interfaces [23, 7, 16, 9]; and semantics-
preserving techniques to bridge high-level models and their low-level implementations [5, 19, 24].

References

[1] Rajeev Alur and Stavros Tripakis. Automatic synthesis of distributed protocols. SIGACT News,
48(1):55–90, 2017.

[2] R-J. Back and J. Wright. Refinement Calculus. Springer, 1998.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[4] David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Stavros Tripakis, Michael Wetter,
and Michael Masin. Determinate Composition of FMUs for Co-Simulation. In Proceedings of the 13th
ACM & IEEE International Conference on Embedded Software (EMSOFT’13), pages 2:1–2:12. IEEE,
2013.

[5] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis. Semantics-Preserving Multitask Implementation
of Synchronous Programs. ACM Transactions on Embedded Computing Systems (TECS), 7(2):1–40,
February 2008.

[6] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[7] Patricia Derler, Edward A. Lee, Stavros Tripakis, and Martin Törngren. Cyber-physical system design
contracts. In ACM/IEEE 4th International Conference on Cyber-Physical Systems – ICCPS 2013, pages
109–118. IEEE, April 2013.

[8] E.W. Dijkstra. Notes on structured programming. In O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare,
editors, Structured programming, pages 1–82. Academic Press, London, UK, 1972.

2



[9] Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. Compositional Semantics and Analysis of
Hierarchical Block Diagrams. In 23rd International SPIN Symposium on Model Checking of Software
(SPIN 2016), volume 9641 of LNCS, pages 38–56. Springer, April 2016.

[10] R.W. Floyd. Assigning meanings to programs. In In. Proc. Symp. on Appl. Math. 19, pages 19–32.
American Mathematical Society, 1967.

[11] C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM, 12(10):576–580, 1969.

[12] Donald E. Knuth. The Art of Computer Programming.

[13] Magnus Persson, Martin Törngren, Ahsan Qamar, Jonas Westman, Matthias Biehl, Stavros Tripakis,
Hans Vangheluwe, and Joachim Denil. A Characterization of Integrated Multi-View Modeling for
Embedded Systems. In Proceedings of the 13th ACM & IEEE International Conference on Embedded
Software (EMSOFT’13), 2013.

[14] Maria Pittou and Stavros Tripakis. Checking Multi-View Consistency of Discrete Systems with respect
to Periodic Sampling Abstractions. In Formal Aspects of Component Software - The 13th International
Conference (FACS 2016), 2016.

[15] Maria Pittou and Stavros Tripakis. Multi-View Consistency for Infinitary Regular Languages. In
International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation –
SAMOS XVI, 2016.

[16] Viorel Preoteasa and Stavros Tripakis. Refinement Calculus of Reactive Systems. In Proceedings of
the 14th ACM & IEEE International Conference on Embedded Software (EMSOFT’14), pages 2:1–2:10.
ACM, October 2014.

[17] Jan Reineke and Stavros Tripakis. Basic Problems in Multi-View Modeling. In Tools and Algorithms
for the Construction and Analysis of Systems – TACAS 2014, volume 8413 of LNCS, pages 217–232.
Springer, 2014.

[18] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, 2009.

[19] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincentelli, P. Caspi, and M. Di Natale. Imple-
menting Synchronous Models on Loosely Time-Triggered Architectures. IEEE Transactions on Com-
puters, 57(10):1300–1314, October 2008.

[20] Stavros Tripakis. Bridging the Semantic Gap Between Heterogeneous Modeling Formalisms and FMI.
In International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation
– SAMOS XV, 2015.

[21] Stavros Tripakis. Compositional Model-Based System Design and Other Foundations for Mastering
Change. Transactions on Foundations for Mastering Change, 1:113–129, 2016.

[22] Stavros Tripakis. Compositionality in the Science of System Design. Proceedings of the IEEE,
104(5):960–972, May 2016.

[23] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A. Lee. A Theory of Synchronous
Relational Interfaces. ACM Transactions on Programming Languages and Systems (TOPLAS), 33(4),
July 2011.

[24] Stavros Tripakis, Rhishikesh Limaye, Kaushik Ravindran, Guoqiang Wang, Hugo Andrade, and Arkadeb
Ghosal. Tokens vs. signals: On conformance between formal models of dataflow and hardware. Journal
of Signal Processing Systems, 85(1):23–43, October 2016.

[25] N. Wirth. Program development by stepwise refinement. Comm. ACM, 14(4):221–227, 1971.

3


